Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3

J. L. García-Muño[z*](#page-3-0)

Institut de Ciència de Materials de Barcelona, CSIC, Campus Universitari de Bellaterra, E-08193 Bellaterra, Barcelona, Spain

M. A. G. Aranda

Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain

J. A. Alonso and M. J. Martínez-Lope

Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain

(Received 11 January 2009; published 28 April 2009)

We present a high-resolution synchrotron powder-diffraction investigation on $NdNiO₃$ that confirms the presence on long-range charge order below the metal-insulator transition previously reported at $T_{\text{MI}}=205$ K. The monoclinic symmetry of the insulating state is unambiguously proved. A detailed description of the true crystal structure in the antiferromagnetic phase $(T_M = T_N)$ was obtained that proves the occurrence of two octahedral sites below T_{MI} . Antiferromagnetic NdNiO₃ presents long-range charge order with $\delta \approx 0.2 - 0.3 \ll 1$. The breathing distortion observed in the octahedra reduces the repulsion *U* at Ni sites, avoids Jahn-Teller effect, and allows charge segregation. The phonon-assisted partial charge disproportionation is a common mechanism in $RNiO_3$ oxides. With the exception of LaNiO₃, the compounds of the whole family of R NiO₃ perovskites must be considered band insulators with a charge ordered ground state at low temperature.

DOI: [10.1103/PhysRevB.79.134432](http://dx.doi.org/10.1103/PhysRevB.79.134432)

PACS number(s): $71.30.+h$, $71.45.Lr$

The unconventional electronic and magnetic properties of the nickel perovskites $RNiO₃$ (R : rare-earth) have been the object of extensive investigations[.1](#page-3-1)[–12](#page-4-0) A sharp insulator-tometal transition occurs at a temperature that increases as the ionic radii of the lanthanide ion is reduced.^{1–[3](#page-3-2)} In these oxides the transformation from localized electron into delocalized electron states can be induced by temperature, chemical, or hydrostatic pressure, $13-15$ $13-15$ and it is in great contrast with the Mott transition in more conventional oxides. Initially, the metal-to-insulator transition at T_M was attributed to a charge transfer gap due to bandwidth narrowing[.2](#page-3-3)[,3](#page-3-2)[,5](#page-4-3) The reported magnetic order in the insulating phase suggested an orbital ordered state[.5](#page-4-3)[–7](#page-4-4) But several works demonstrated the absence of orbital or Jahn-Teller (JT) order.^{6[,9](#page-4-6)[,16](#page-4-7)} It was then apparent that any of these two common mechanisms in narrow band oxides were breaking down the twofold degeneracy of the singly occupied e_g orbital [in the low spin $\widetilde{\text{Ni}^{3+}}(t_{2g}^6 e_g^1)$ state].

The scenario changed after the detection of a subtle symmetry change in $YNiO₃$ signaling charge order in the insulating phase[.17](#page-4-8) Charge disproportionation and a subtle symmetry change from orthorhombic to monoclinic was unambiguously observed at the metal-insulator transition in the heaviest rare-earth nickelates (RNiO₃, from Y to Lu, the smallest member of the family). $17-19$ $17-19$ These perovskites with simple structure are very attractive examples of how orbital degeneracy can be lifted through charge ordering instead of Jahn-Teller distortion if the system is close to the itinerant state boundary.^{17,[20](#page-4-10)} This mechanism is based on charge segregation and does not require orbital ordering. It is driven by the Hund's coupling and is favored by a limited delocalization of the e_g electrons (a certain band broadening that trans-forms the levels into bands).^{[20](#page-4-10)} AgNiO₂ has been shown to be a 2D analog to $RNiO₃$ (Ref. [21](#page-4-11)).

After the discovery of long-range-ordered charge segregation in heavy $RNiO₃$ perovskites (from Y to Lu) many efforts were made to detect charge disproportionation

(long- or short-ranged) in *RNiO*₃ compounds of large rare-earth cations (light rare earths). The coexistence of contracted/expanded $NiO₆$ octahedra in the compounds with lighter (from Dy to Pr) lanthanides is a long-standing open question, given that the difficulties for detecting the expected symmetry breaking at T_{MI} increase extraordinarily for large rare earths. At present, some available results are contradictory. Neutron-diffraction studies across T_{MI} were reported in Ref. [3](#page-3-2) for *R*=La, Pr and Nd, and in Ref. [9](#page-4-6) for Sm and Eu. They did not detect symmetry changes, and using the *Pbnm* description, an isotropic expansion of the cell and the Ni-O bonds $(\Delta d_{\text{Ni-O}} \approx +0.004 \text{ Å})$ was reported across the transition. 3 A crossover in the nature of the metallic phases has been proposed by several groups on moving from heavy to light $RNiO_3$ nickelates.^{22[–24](#page-4-13)} On the other hand, recent Raman spectra, electron diffraction, 25 and resonant x-ray scattering²⁶ on NdNiO₃ thin films were compatible with an orthorhombic-to-monoclinic transition. Moreover, from a x-ray-absorption study of $PrNiO₃$ and $NdNiO₃$, Piamonteze *et al.*[27](#page-4-16) concluded that the insulating phase of these compounds presents two different Ni sites and charge order, at least at the short-range scale. Some examples of challenging issues in slightly distorted RNiO₃ perovskites are (1) rule out or confirm a possible phase boundary in the origin of the insulator state on going from the small to the large rare-earth cations nickelates; (2) distinguish between the possibility of two different Ni sites organized in short-range or long-range charge order, (3) provide a correct detailed structural description that permit the comparison with the smaller members of the family; (4) quantum critical characteristics in their T -*P* phase diagram. In this work we have tried to give answer to the first three questions. We present a high-resolution synchrotron diffraction study on $NdNiO₃$ that has permitted us to obtain its true insulating structure. After several attempts, it is the first time that its low-temperature distorted structure is properly described.

FIG. 1. (Color online) Resistance of NdNiO₃ (on heating and cooling) showing an augment of 3 orders of magnitude after formation of a charge order phase. Inset: kink in the susceptibility related with the metal-insulator transition and the onset of the antiferromagnetic order $(T_N = T_M)$. Hysteresis on heating and cooling can be appreciated.

Polycrystalline $NdNiO₃$ was synthesized under high oxygen pressure (200 bar) following the procedure described in Ref. [28.](#page-4-17) The sample was extensively characterized by laboratory x-ray powder diffraction, magnetic and electric measurements, and synchrotron diffraction, which confirmed its quality. High-resolution synchrotron x-ray powderdiffraction (SPD) measurements were performed at the ESRF in Grenoble (BM16). Good quality diffraction patterns were collected at 290 and 50 K, using a short wavelength of $\lambda = 0.518056(3)$ Å. Polycrystalline NdNiO₃ was loaded in a borosilicate glass capillary (ϕ =0.5 mm) and rotated during data collection. The counting time was about 3 h to have the desired statistics over the angular range 4 to 42 degrees in 2θ . The data were analyzed by the Rietveld method using the FULLPROF (Ref. [29](#page-4-18)) program. A minor residual NiO phase was detected and accounted for appropriately in the refinements.

The electrical resistance shown in Fig. [1](#page-1-0) illustrates the abrupt change in the resistance (about 3 orders of magnitude) at the metal-insulator transition, $T_{\text{MI}} \approx 205$ K. The hysteretic behavior of the resistivity extends along the interval 110–205 K and suggests a possible coexistence of metallic and insulating phases over that temperature range. Although there is not yet a proper explanation of the change in the spectral properties of $NdNiO₃$ down to temperatures as low as $\approx 0.5T_{\text{MI}}$ (Ref. [22](#page-4-12)), they appear to be related to electronic inhomogeneities in that temperature range. On the contrary, in the compounds with $T_N \neq T_{\text{MI}}$ (like SmNiO₃ or $EuNiO₃$) no changes were observed in the photoemission spectra below T_{MI} (Ref. [22](#page-4-12)). Figure [1](#page-1-0) also shows the hysteretic small anomaly in the susceptibility $\chi(T)$ at $T_N = T_{\text{MI}}$.

Synchrotron diffraction data were collected at both sides of the metal-insulator transition. 50 K is far below the temperature interval with hysteretic behavior of the resistivity. Diffraction data collected a 290 K (metallic phase) were refined using the orthorhombic *Pbnm* symmetry. The room

TABLE I. (a) Refined atomic coordinates for $NdNiO₃$ at 290 K in space group *Pbnm*. (b) Refined atomic coordinates for NdNiO₃ at 50 K in space group $P2_1/n$.

(a) $a=5.38712(2)$, $b=5.38267(2)$, $c=7.60940(3)$ Å						
Atom	x	$\mathcal V$	Z.	B (\AA^2)		
Nd(4c)	0.9958(2)	0.0350(1)	1/4	0.65(2)		
Ni(4b)	1/2	Ω	Ω	0.32(2)		
O1(4c)	0.0692(9)	0.4896(9)	1/4	0.72(8)		
O2(8d)	0.7165(9)	0.2870(9)	0.0394(9)	1.13(9)		

	Reliability factors			
290 K		R_{R}	R_f	
Pbnm	4.53	3.06	4.81	

(b) $a = 5.37783(5)$, $b = 5.38846(4)$, $c = 7.60511(6)$ Å, $\beta = 90.061(1)$ °

temperature (RT) structure, interatomic distances, and angles reported in Ref. [3](#page-3-2) were confirmed. The corresponding atomic coordinates are given in Table [I.](#page-1-1) Selected interatomic distances and angles are shown in Table [II,](#page-2-0) where we have also reproduced for comparison the values reported in Ref. [3](#page-3-2) from neutron data using the *Pbnm* group. The high angular resolution of the synchrotron x-ray data allowed us to determine the cell dimensions with high precision. $NdNiO₃$ cell is highly pseudocubic $(a = 5.3871 \text{ Å}] \approx b = 5.3826 \text{ Å}$ $\approx c / \sqrt{2}$ [=5.3807 Å]); it is the member of the *RNiO*₃ family with the highest metric pseudocubicity. This is shown in Fig. [2,](#page-2-1) where RT cell parameters and the orthorhombic strain obtained for $NdNiO₃$ are compared to those of other nickelates.

Regarding the insulating phase, we have tested the orthorhombic *Pbnm* and monoclinic $P2_1/n$ symmetries against the data recorded at 50 K (see Fig. [3](#page-2-2)). Although differences in the reliability factors were not huge, we obtained better fitting indices with the $P2_1/n$ than with the *Pbnm* description: $R_B = 5.26(5.59)$ and $\chi^2 = 5.07(6.60)$ in the refined monoclinic (orthorhombic) model. However, a more direct and definitive evidence of the real symmetry was achieved by visual examination of the high-resolution SPD profile below

TABLE II. Selected bond distances and angles for $NdNiO₃$ in the metallic $(290 K)$ and the insulating $(50 K)$ regimes. Present values are compared to those given in Ref. [3.](#page-3-2)

	Insulator		Metal	
	Synchrotron This work 50 K $P2_1/n$	Neutron Ref. 3 1.5 K Pbnm	Synchrotron This work 290 K Pbnm	Neutron Ref. 3 300 K Pbnm
$Ni1-O1(\AA)$	1.930(16)	1.942(2)	1.941(2)	1.940(2)
$Ni1-O2(\AA)$	1.891(15)	1.941(4)	1.928(9)	1.940(3)
$Ni1-O3(\AA)$	1.911(15)	1.954(4)	1.961(9)	1.947(3)
\langle Ni1-O \rangle (Å)	1.910	1.946	1.943	1.942
Δ_d (Ni1) \times 10 ⁴	2.10			
$Ni2-O1(\AA)$	1.960(16)			
$Ni2-O2(\AA)$	1.966(15)			
$Ni2-O3(\AA)$	2.023(15)			
\langle Ni2-O \rangle (Å)	1.983			
Δ_d (Ni2) $\times 10^4$	0.71			
$Ni1-O1-Ni2$	155.6(9)	156.5(3)	157.6(3)	157.6(3)
Ni1-O2a-Ni2	161.4(7)	155.7(8)	156.1(8)	156.8(7)
Ni1-O2b-Ni2	150.6(7)			

 T_{MI} . The characteristic splitting expected for some reflections in the monoclinic structural distortion was unambiguously confirmed. Figure [4](#page-2-3) shows an example of monoclinic doublet observable at 50 K. The splitting of the $(40-4)/(404)$ reflections, as expected in the case of $P2_1/n$ symmetry, is clearly visible and reproduced only with the monoclinic description. Instead of the single (404) reflection appearing in the *Pbnm* symmetry (as observed in the high temperature phase), $(40-4)/(404)$ reflections appear split in the insulating state. The crystal structure of $NdNiO₃$ was thus satisfactorily refined using the same description reported for $YNiO₃$ (Ref.

FIG. 2. (Color online) Evolution of cell parameters in $RNiO₃$ perovskites at RT. The figure illustrates the high pseudocubicity of NdNiO₃. Inset: evolution of the orthorhombic strain S_{ab} [S_{ab} = $(a-b)/(a+b)$]. (R size: averaged ionic radii of rare-earths at the A-site of the perovskite).

FIG. 3. (Color online) Observed (crosses), calculated (line), and difference synchrotron SPD pattern for NdNiO₃ at 50 K using the monoclinic $P2_1/n$ true symmetry. The inset shows the fit of the high-angle region. (Lower ticks correspond to NiO impurity phase.)

[17](#page-4-8)). With decreasing temperature, the b parameter in $YNiO₃$ contracts at $T_{\text{MI}}(\Delta b/b = -0.16\%)$ and *c* expands. In NdNiO₃, *expands and <i>a* contracts decreasing temperature across T_{MI} , and as a result NdNiO₃ switches from $\mathbf{O}''(a > b > c / \sqrt{2})$ to $\mathbf{O}'(b > a > c / \sqrt{2}).$

The excellent fit using the $P2_1/n$ symmetry establishes the presence of two inequivalent Ni sites. Table [I](#page-1-1) contains the atomic coordinates obtained in the refinements of the insulating phase. The monoclinic angle $\beta = 90.069(1)$ ° presents a

FIG. 4. (Color online) Observed and calculated powderdiffraction intensities around the orthorhombic (044)/(404) pair of reflections. Top: 290 K (metallic, orthorhombic) showing the doublet. Bottom: 50 K (insulating, monoclinic) showing the triplet. Note the (40-4) and (404) monoclinic splitting.

very small deviation from 90°, smaller than any other value previously reported for the heaviest rare-earth nickelates (from β =90.16° for Lu to β =90.08° for Ho and Y). Such a small deviation and the strong pseudocubicity of the cell edges made it difficult to determine the correct structure/ symmetry of $NdNiO₃$. In present case, the instrumental contribution to the width of the peaks was $\sim 0.003^{\circ}$, neglecting the broadening at low angles due to the axial divergence. Figures [3](#page-2-2) and [4](#page-2-3) illustrate the excellent agreement between the observed and calculated SPD profile for the insulating low-temperature phase of $NdNiO₃$. Table [II](#page-2-0) contains selected bond distances and angles for the true monoclinic structure.

Table [II](#page-2-0) proves that there are two different octahedral oxygen environments related with two crystallographically independent Ni positions (Ni1 and Ni2 sites). Oxygens breathe in toward Ni1 yielding \langle Ni1-O \rangle =1.910 Å (contracted), and out of Ni2: \langle Ni2-O \rangle =1.984 Å (expanded). Both distances are clearly well above and below the average distance beyond T_{MI} : 1.943(2) Å. The observed Ni-O bond lengths confirm charge disproportionation/segregation in NdNiO₃: $2 e_g^1 \rightarrow e_g^{1-\delta} + e_g^{1+\delta}$. Ni1 site is electron depleted and Ni2 electron rich. In the ionic limit of the charge order picture Ni1 would correspond to Ni^{4+} and Ni2 to Ni^{2+} sites. The actual structure of the insulating phase of *RNiO*3 oxides with $T_{\text{IM}} = T_{\text{N}}$ was lacking and has been a matter of controversy during the last ten years. Our high-resolution structural study demonstrate long-range charge order in the insulator state for the large rare-earth nickelate $NdNiO₃$.

LuNiO₃ is the end member of small $RNiO₃$. The average bond lengths for the two octahedra in $LuNiO₃$ at RT are, respectively, $\langle \text{Ni1-O}\rangle = 1.9147$ Å and $\langle \text{Ni2-O}\rangle = 1.9990$ Å.¹⁸ Their difference, Δd , for LuNiO₃ is Δd (Lu)=0.084 Å. In NdNiO₃ we have obtained $\Delta d(Nd) = 0.072$ Å; hence in the present case the difference has been reduced with respect to the smallest nickelates of the family $[\Delta d(\text{Nd}) < \Delta d(\text{Lu})]$. Therefore, we must conclude that the degree of charge segregation δ has diminished in $RNiO₃$ on going from small to large lanthanides. Ni valences at Ni1 and Ni2 sites were estimated using the standard approach of Brown's bondvalence model $(BVM)^{30}$ $(BVM)^{30}$ $(BVM)^{30}$ $(R_0=1.686$ for the Ni³⁺-O²⁻ pair). The estimated valences are $V_1 = +3.27(7)$ for Ni1 sites (expanded) and $V_2 = +2.70(7)$ for Ni2 (contracted) $\delta \approx \delta' \approx 0.28(7)e$. In Ref. [26](#page-4-15) a value of $\delta + \delta' \approx 0.45(4)e$ was estimated from resonant x-ray scattering in an epitaxial film of $NdNiO₃$, also consistent with a diminution of charge segregation.

Moreover, as shown in Table [II,](#page-2-0) the octahedral-site distortion of the two octahedra in NdNiO₃ is $\Delta_d(Ni1)=2.1\times10^{-4}$ and $\Delta_d(Ni2)=0.7\times10^{-4}$. As in the case of LuNiO₃, the deformation in the octahedra is very small, between 1 and 2 orders of magnitude smaller than in JT $R M nO₃$ compounds

 $(\Delta_d(LaMnO_3) = 33.1 \times 10^{-4})$. It is thus demonstrated that long-range charge ordering is preferred to Jahn-Teller distortion in antiferromagnetic NdNiO₃. Consequently, NdNiO₃ should be considered an almost-metallic oxide $(LaNiO₃)$ is metallic in all the temperature range), in which partial charge disproportionation (charge order) is energetically favored to Jahn-Teller distortion in spite of the Hubbard repulsion. These results confirm that the model and calculations presented in Ref. 20 also apply to the present case, and NdNi O_3 , as well as large volume nickelates with $T_{\text{MI}} = T_N$, must be considered band insulators below the transition. Despite the hybridized state, the gap opens between essentially the polarized e_{φ} band of Ni²⁺ and the roughly unpolarized e_g band of Ni^{4+} .^{[20](#page-4-10)} The insulating state is stabilized through the energy gained by the contraction (expansion) of $Ni^{3+\delta}O_6(Ni^{3-\delta}O_6)$ octahedra. Long and short Ni-O bonds appear forming a long-range-ordered configuration. Moreover electrons remain partially delocalized. The Hund coupling at the $e_g \uparrow$ band (mainly formed of Ni²⁺ states) overcomes the on site repulsion *U* at Ni^{3− δ} sites, which has been reduced thanks to (i) the breathing distortion in the octahedra, and (ii) the Ni-O hybridization favored by a very small or negative $3d$ (Ni)- $2p$ (O) charge-transfer gap.

In this work we provided the true structure of $NdNiO₃$ in the insulating state (the compound of the family presenting the minimum orthorhombic strain and almost pseudocubic lattice). This is one of the *RNiO*₃ perovskites with largest rare earths, presents a single structural and magnetic transition $(T_N = T_M)$ for the onset of antiferromagnetic and charge ordering. Its crystal structure confirms that $NdNiO₃$ presents long-range charge order below $T_{\text{MI}}(=T_N)$, with $\delta \approx 0.2 - 0.3 \ll 1$. The difference between the two Ni-O bond lengths, $\Delta d = 0.072$ Å in NdNiO₃, is smaller than in the nickelates with smaller rare earths, indicating a diminution of δ . The insulating structure of $NdNiO₃$ confirms that band gap opening and degeneracy lifting in the extreme of the *RNiO*3 series with larger lanthanides (for which $T_N = T_{\text{MI}}$) is driven by the same mechanism as in the heaviest (small) rare-earth nickelates $(T_N \ll T_{\text{MI}})$. The whole family of $RNiO_3$ perovskites must be considered band insulators with a charge ordered ground state at low temperature. The only exception is $LaNiO₃$, in which the higher hybridization between adjacent Ni sites avoids both Jahn-Teller effect but also charge segregation.

Financial support from MICINN (Spanish government) under Projects No. MAT2006-11080-C02-02, No. MAT2007-60536, and NANOSELECT Grant No. CSD2007- 00041, and Generalitat de Catalunya Grant No. 2005-GRQ-00509) is thanked. We thank European Synchrotron Radiation Facility for the provision of beam time. The FAME European Network of Excellence is also acknowledged.

^{*}Corresponding author; garcia.munoz@icmab.es

¹ P. Lacorre, J. B. Torrance, J. Pannetier, A. I. Nazzal, P. W. Wang, and T. C. Huang, J. Solid State Chem. 91, 225 (1991).

² J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch.

Niedermayer, Phys. Rev. B 45, 8209 (1992).

³ J. L. Garcia-Munoz, J. Rodriguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).

⁴M. Medarde, P. Lacorre, K. Conder, F. Fauth, and A. Furrer,

STRUCTURE AND CHARGE ORDER IN THE...

Phys. Rev. Lett. **80**, 2397 (1998).

- ⁵ J. L. García-Muñoz, J. Rodríguez-Carvajal, and P. Lacorre, Europhys. Lett. **20**, 241 (1992).
- ⁶ J. L. García-Muñoz, J. Rodríguez-Carvajal, and P. Lacorre, Phys. Rev. B **50**, 978 (1994).
- ⁷ J. L. García-Muñoz, P. Lacorre, and R. Cywinski, Phys. Rev. B **51**, 15197 (1995).
- 8M. T. Fernández-Díaz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, and J. L. García-Muñoz, Phys. Rev. B **64**, 144417 $(2001).$
- ⁹ J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M. T. Fernández-Díaz, F. Fauth, and V. Trounov, Phys. Rev. B **57**, 456 (1998).
- ¹⁰ J. S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. Lett. **84**, 526 (2000).
- ¹¹ J. S. Zhou and J. B. Goodenough, Phys. Rev. B **69**, 153105 $(2004).$
- ¹² J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. Martínez, G. Demazeau, A. Largeteau, J. L. García-Muñoz, A. Muñoz, and M. T. Fernández-Díaz, Chem. Mater. **11**, 2463 (1999).
- ¹³ J. S. Zhou, J. B. Goodenough, and B. Dabrowski, Phys. Rev. Lett. **95**, 127204 (2005).
- ¹⁴ J. S. Zhou, J. B. Goodenough, and B. Dabrowski, Phys. Rev. Lett. **94**, 226602 (2005).
- ¹⁵ J. L. García-Muñoz, M. Amboage, M. Hanfland, J. A. Alonso, M. J. Martínez-Lope, and R. Mortimer, Phys. Rev. B **69**, 094106 $(2004).$
- 16V. Scagnoli, U. Staub, A. M. Mulders, M. Janousch, G. I. Meijer, G. Hammerl, J. M. Tonnerre, and N. Stojic, Phys. Rev. B **73**, 100409(R) (2006).
- ¹⁷ J. A. Alonso, J. L. García-Muñoz, M. T. Fernández-Díaz, M. A. G. Aranda, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. Lett. **82**, 3871 (1999).
- ¹⁸ J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, and M. T. Fernández-Díaz, Phys. Rev. B **61**, 1756 $(2000).$
- ¹⁹ J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, J. L. García-Muñoz, M. T. Fernández-Díaz, and M. A. G. Aranda, Phys. Rev. B **64**, 094102 (2001).
- ²⁰ I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J. A. Alonso, W. G. Marshall, R. M. Ibberson, A. Podlesnyak, M. J. Martínez-Lope, and M. M. Abd-Elmeguid, Phys. Rev. Lett. 98, 176406 (2007).
- 21E. Wawrzynska, R. Coldea, E. M. Wheeler, I. I. Mazin, M. D. Johannes, T. Sorgel, M. Jansen, R. M. Ibberson, and P. G. Radaelli, Phys. Rev. Lett. **99**, 157204 (2007).
- ²² I. Vobornik, L. Perfetti, M. Zacchigna, M. Grioni, G. Margaritondo, J. Mesot, M. Medarde, and P. Lacorre, Phys. Rev. B **60**, R8426 (1999).
- 23K. Okazaki, T. Mizokawa, A. Fujimori, E. V. Sampathkumaran, M. J. Martinez-Lope, and J. A. Alonso, Phys. Rev. B **67**, 073101 $(2003).$
- ²⁴ I. V. Nikulin, M. A. Novojilov, A. R. Kaul, A. F. Maiorova, and S. N. Mudretsova, Mater. Res. Bull. 39, 803 (2004).
- 25M. Zaghrioui, A. Bulou, P. Lacorre, and P. Laffez, Phys. Rev. B 64, 081102(R) (2001).
- 26U. Staub, G. I. Meijer, F. Fauth, R. Allenspach, J. G. Bednorz, J. Karpinski, S. M. Kazakov, L. Paolasini, and F. d'Acapito, Phys. Rev. Lett. **88**, 126402 (2002).
- 27C. Piamonteze, H. C. N. Tolentino, A. Y. Ramos, N. E. Massa, J. A. Alonso, M. J. Martínez-Lope, and M. T. Casais, Phys. Rev. B **71**, 012104 (2005).
- ²⁸ J. A. Alonso, M. J. Martinez-lope, and M. Hidalgo, J. Solid State Chem. **116**, 146 (1995).
- ²⁹ J. Rodríguez-Carvajal, Physica B **55**, 192 (1993).
- ³⁰ I. D. Brown, Z. Kristallogr. **199**, 255 (1992).